» »

Боевые дирижабли «прикроют» Россию от ракетного удара (фото). Дутая сенсация: кто и зачем строит дирижабли в XXI веке Современные боевые аэростаты

13.04.2024

От транспортника до воздушного пункта управления О том, что на вооружение российской армии могут быть поставлены обитаемые дирижабли, говорилось уже не раз. И вот стало известно, что до конца 2018 года будет построен дирижабль «Атлант» сразу в двух вариантах грузоподъемности для их возможного использования в интересах Минобороны России.Пока речь идет только о создании макета аппарата: само строительство первого экземпляра стартует не раньше 2016 года, отметил представитель компании-производителя. Начало же летных испытаний этой техники намечено на конец 2018 года.«Военные» модификации получат разработанные холдингом дирижабли «Атлант-30» грузоподъемностью 16 тонн и «Атлант-100», который может поднимать уже 60 тонн. Аппараты отличает способность осуществлять вертикальный взлет и посадку с неподготовленных площадок и водной поверхности, возможность выполнять полеты во всех климатических зонах. «Атланты» смогут доставлять грузы на дальность до 2 тысяч километров и передвигаться со скоростью 140 километров в час. Экипаж обоих летательных аппаратов не превышает трех человек. Возможности этих дирижаблей в военных целях неоценимы.«По сути, внедрение этого уникального транспортного средства полностью соответствует новой концепции создания мобильной армии, открывает новые возможности для использования средств радиолокационного наблюдения и ПВО, доставки десантных подразделений и даже создания аэромобильных пунктов управления», - считает представитель компании.«Авгуръ-РосАэроСистемы», предлагающий выпускать дирижабли для российской армии, имеет возможность проводить полный цикл работ по созданию воздухоплавательной техники. Проектирование аппаратов ведет собственное КБ, а многофункциональное производство включает в себя уникальный участок по сборке оболочек и современную сварочную линию. Имеются также собственный летно-испытательный комплекс и авиационный учебный центр. Именно на этом предприятии были созданы первый российский сертифицированный дирижабль Au-12, а также крупнейший в мире нежесткий дирижабль Au-30, установивший в 2008 году мировой рекорд дальности полета - 626 километров против 374,7 км у британского дирижабля GA-42.Ноу-хау российских дирижаблестроителей Использование дирижаблей в военных целях не сбрасывается со счетов нигде в мире, и это подтверждают последние данные. Так, Пентагон заявляет о возможности использования таких устройств в своей системе ПРО. Группировка беспилотных боевых дирижаблей может быть задействована для прикрытия Вашингтона от ракетных атак, заявляют американские военные. Начинка таких кораблей очень технологична. Ее основа – радары системы JLENS, которые позволяют обнаруживать низколетящие крылатые ракеты, а также самолеты на удалении более 550 километров. Сейчас эти аппараты проходят тестирование, правда, для заступления на боевое дежурство их еще предстоит встроить в систему эшелонированной обороны.Имеется и опыт практического использования летательных аппаратов, работающих по принципу дирижаблей, в интересах вооруженных сил. Так, аэростаты с комплектом разведывательной аппаратуры применялись в ходе боевых действий в Ираке и Афганистане. Такие аппараты могли в течение двух недель «висеть» в воздухе и не требовать обслуживания. Вообще, возможность дирижаблей и аэростатов продолжительное время находиться в небе без дозаправки делает их незаменимыми. Скрупулезные американцы даже подсчитали, что эксплуатация беспилотного разведывательного дирижабля обходится в сумму, в 5-7 раз меньшую, чем при использовании самолета, предназначенного для ведения разведки.Аппараты российского семейства «Атлант» могут стать серьезной альтернативой заокеанским разработкам. Наш дирижабль менее капризный, например, ему практически не требуется инфраструктура для обслуживания и швартовки. Жесткая обшивка даст возможность продолжать полет при боковом и встречном ветре до 30 метров в секунду. Кроме того, у «Атлантов» будет воздушная подушка, которая позволит им приземляться на воду, лед и любую ровную поверхность. Но самое главное, что нашим разработчикам удалось справиться с классической проблемой всех дирижаблей. Дело в том, что после разгрузки аппарат резко тянет вверх, и он становится неуправляемым. Российские специалисты нашли решение проблемы: на «Атланте» создана система активной балластировки, где в качестве балласта используется… сжатый воздух, который закачивается с помощью оборудования, установленного на дирижабле.По главной площади - парадом Нынешние дирижабли - это уже не простенькие аппараты прошлого века и даже не исполин «Гинденбург». В основе их корпуса - многослойная композитная ткань, а оболочка изготавливается из современных высокопрочных материалов. К слову, применение композитных материалов дает дирижаблю и еще один плюс: малозаметность для систем ПВО. Аппарат прозрачен для радиоволн и не излучает тепла. Оболочки же наполняются не взрывоопасным водородом, как раньше, а негорючим гелием. В современных дирижаблях также применяется система автопилотирования, другое высокотехнологичное оборудование.«Возвращение дирижаблей сегодня выглядит более реальным, чем 20 лет назад, - считает старший научный сотрудник ГМИК им. К.Э. Циолковского Тамара Горюн. - Несколько центров в мире движутся в одном направлении - к созданию устойчивого к ветрам аппарата, не нуждающегося в сложной инфраструктуре, со стоимостью перевозок, несравнимой с любым другим воздушным транспортом. Новую страницу в истории дирижаблестроения может открыть и освоение Арктики».Кстати, у нашей страны в целом имеется большой опыт создания дирижаблей. В 1932 году четыре модели первых советских дирижаблей («СССР В-1», «СССР В-2», «СССР В-3», «СССР В-4») даже демонстрировались на параде на Красной площади. К началу Великой Отечественной войны Красная Армия располагала шестью полками и десятью отдельными воздухоплавательными дивизионами. Дирижабли применялись для подготовки парашютистов и транспортных перевозок. Было совершено почти 1,5 тысячи вылетов. Активно применялись аэростаты и в противовоздушной обороне: фотохроника с панорамой плывущих над Москвой аппаратов, которые закрывали собой небо над столицей, известна всем…После войны работы в этом направлении несколько стихли, хотя известно, что в 1986 году аэростаты были задействовованы в освещении круглосуточной стройплощадки на месте сооружения саркофага над разрушенным 4-м энергоблоком Чернобыльской АЭС.Дирижабли особого назначения Военное будущее дирижаблей и аэростатов - вполне реальное. В Долгопрудненском конструкторском бюро автоматики сейчас идет работа над аппаратом «Пересвет», который способен обнаруживать крылатые ракеты типа «Томагавк» и «Томахоук» на удалении до 400 километров. Как подчеркивает представитель КБ Сергей Бендин, установленная на «Пересвете» радиолокационная станция попросту «висит» на высоте несколько километров, благодаря чему она не имеет «мертвых зон».К слову, первый боевой дирижабль был принят накануне Первой мировой войны на вооружение германской армии. 75 таких аппаратов участвовали в бомбардировках Лондона. Правда, британцам впоследствии удалось уничтожить 52 из них. Тем не менее за войну немецкие дирижабли сбросили на противника почти 340 тонн различных бомб.В годы Второй мировой войны дирижабли активно использовались уже американцами. Их применяли для поиска и уничтожения германских подводных лодок. К лету 1943 года под звездно-полосатым флагом действовали около 150 гелиевых дирижаблей, вооруженных радарами, пушками и глубинными бомбами. Командующий военно-морскими силами рейха гросс-адмирал Дениц был даже вынужден запретить своим субмаринам атаковать конвои, сопровождаемые дирижаблями.Сегодня ставка делается на транспортное и разведывательное применение, а также на использование этих аппаратов для предупреждения и реагирования на чрезвычайные ситуации. В 2014 году Военно-промышленная комиссия при правительстве РФ включила в программу «Инновационный транспорт Севера» внедрение системы мониторинга арктических регионов с помощью дирижаблей, оборудованных тепловизорами, радиолокаторами, лазерными датчиками и видеокамерами.Речь сегодня о создании не только пилотируемых, но и беспилотных дирижаблей, в том числе компактного размера. Один из таких аппаратов, разрабатываемых в уже упомянутом Долгопрудненском конструкторском бюро автоматики, может поднимать всего 10 килограммов полезного груза (например, видеоаппаратуру и оборудование передачи сигнала) и летать на высоте около километра. В то же время период автономной работы такого аппарата в воздухе превышает три часа, что позволяет ему спокойно патрулировать территории, проводить разведку воздушной обстановки, а также контролировать пожароопасные районы.

В конце XX века возобновился интерес к дирижаблям: теперь вместо взрывоопасного водорода применяется инертный гелий, получение которого стало относительно дешёвым с развитием техники. Тем не менее, до сих пор сфера их применения остаётся весьма ограниченной: рекламные, увеселительные полёты, наблюдение за дорожным движением и т. п. Существует несколько проектов возрождения. Основная область, где они могут быть востребованы в XXI веке — это транспортировка грузов, в том числе нестандартных, необычной формы. Подобные проекты существуют во многих странах Европы, в США, а также в России.

Россия

Au-30 на МАКС-2007:
Объём оболочки — 5200 м³;
Диаметр оболочки — 13,5 м;
Длина дирижабля — 54 м;
Строительная высота дирижабля — 17,5 м;
Масса конструкции дирижабля — 3350 кг;
Масса полезной нагрузки — 1500 кг.

В конце 1980-х — начале 1990-х в России появился проект «Термоплан», отличительной особенностью которого являлось использование для создания подъёмной силы помимо гелиевой секции дирижабля и секцию с воздухом, нагреваемым двигателями. Благодаря этому удалось снизить вес непроизводительного балласта на 70-75 % в сравнении с дирижаблями других конструкций и, следовательно, повысить экономичность. Кроме того, такому дирижаблю не нужны закрытые эллинги и причальные мачты, что резко снижает стоимость обслуживающей инфраструктуры. Дискообразная форма корпуса позволяет осуществлять полёт при боковом и встречном ветре в 20 м/с.

Компания «Авгуръ» в 2000 году на территории тульского аэропорта провела лётные испытания привязного унифицированного аэростата «УАН-400», имевшего на борту комплекс радиолокационного наблюдения и связи «Кордон-2». Аэростат привязной, поднимается и опускается при помощи лебёдки из кузова военного шасси «ГАЗ-66», имеет объём 400 м³, грузоподъёмность — 120 кг, высота подъёма — 1200 метров. В качестве базовой РЛС использована разработка тульского НИИ «Стрела» — комплекс «Кредо-1Е» с щелевой антенной диапазона 2 см. Уже на высоте 300 метров станция имеет возможность засекать все предметы в радиусе 40 километров, движущиеся со скоростью не менее 2,5 км/час.

На МАКС-2005 были представлены некоторые уже построенные российские дирижабли производства НПО «Авгуръ-РосАэроСистемы». Дирижабль «Au-12м» имеет объём 1250 м³, его длина — 34 метра, рабочая высота достигает 1500 метров, скорость — до 90 км в час, время пребывания в воздухе — 6 часов, дальность полёта до 350 км, экипаж — 2 человека. Представленные экспонаты заинтересовали потенциальных заказчиков, уже в ближайшее время «НПО Авгуръ-РосАэроСистемы» планирует перейти к серийному производству некоторых моделей. Разработанный и пстроенный в «НПО Авгуръ-РосАэроСистемы» 10-местный дирижабль Au-30 уже нашел применение для мониторинга инфраструктурных объектов и вскоре станет элементом одной из государственных программ по развитию дирижаблестроеия. «НПО Авгуръ-РосАэроСистемы» разработало и посторило крупнейший в России аэростат военного назначения «Пума», объём которого составляет 11800 м³, полезная нагрузка — 2,2 тонны. Аэростат «Пума» способен совершать непрерывное боевое дежурство в течении 25 дней, выдерживая во время дежурства на рассчетной высоте ветер силой до 12 баллов по шкале Бофорта.

В перспективных разработках у компании стратосферный дирижабль «Беркут» с рабочим потолком 20000 метров и автономностью в 4 месяца, а также объёмом 320 тыс. м³, длиной 250 метров, диаметром — 50 метров. Он рассматривается как телекоммуникационная платформа с площадью покрытия до 500 тысяч км². Для обеспечения дирижабля будут служить солнечные батареи площадью 8 тыс. м².

Также дирижабли могут применяться для патрулирования автодорог, наблюдения за общественным порядком на крупных массовых мероприятиях, в рекламных целях и т. д.

Российская компания «Аэроскан» в 2006 году начинает использовать дирижабли для пространственно-технического мониторинга местности и инженерных объектов.

Правительство Свердловской области в октябре 2006 года объявило о намерении организовать в регионе производство дирижаблей. Для организации производства будет выделено $30 млн. В проекте будут принимать участие: ОАО «Уральский завод гражданской авиации», ФГУП "ПО «Уральский оптико-механический завод», ФГУП «НПО Автоматики», ФГУП "ОКБ «Новатор» и ОАО "НПП «Старт». При этом стоимость зарубежных аналогов таких летательных аппаратов, как правило, в 2,5-4 раза выше, чем российских.

Беспилотные дирижабли

ОКО-1 на МАКС-2007

Беспилотный дирижабль.

В настоящее время беспилотные дирижабли типа Skystar 300 и привязные беспилотные аэростаты типа ОКО-1 используются для высотного видеонаблюдения. В состав оснащения входят бортовые камеры, которые позволяют производить круглосуточный мониторинг территорий. Одним из очевидных преимуществ дирижабля БПЛА над своим аэродиномическим собратом является отсутствие тенденции дирижаблей к немедленному падению на землю в случае возникновения у беспилотной машины технических неисправностей. Это тенденция особенно полезна именно БПЛА, ведь согласно статистике, приведенной в докладе Исследовательской службы Конгресса США, БПЛА имеют в 100 раз большую вероятность разбиться, чем обычные пилотируемые машины Небольшие радиоуправляемые дирижабли также используются в качестве летающих рекламных реплик различных предметов. Например, 1:1 по размеру модель автомобиля. Такие дирижабли популярны на выставках, а также во время спортивных мероприятий на закрытых стадионах..

Беларусь

В Военной академии Беларуси началось проектирование многоцелевого дирижабля разведывательного дозора с информационно-разведывательной платформой, способной заменить самолёт-разведчик А-50 в комплекте с 5 патрульными самолётами впридачу. Шесть таких дирижаблей, установленных на высоте порядка 4 км, способны обеспечить надёжную радиосвязь на территории всей Беларуси.

США

В США ведутся работы по проектированию стратосферных дирижаблей.

Разработка дирижаблей Пентагоном ведётся по двум направлениям. С одной стороны, создаются небольшие дешёвые аэростаты и дирижабли тактического назначения, с другой стороны — ведутся работы по проектированию стратосферных дирижаблей стратегического назначения.

В начале 2005 года американские военные объявили об испытаниях на полигоне в Аризоне мини-аэростата «Combat SkySat Phase 1», который позволил связаться наземным службам на расстоянии в 320 км. Масса мини-аэростата около 2 кг, при массовом производстве стоимость может составлять около 2000 USD.

В Федеральную авиационную администрацию США телекоммуникационная компания «Globetel» подала заявку на испытательный полёт дирижабля «Stratellite» с телекоммуникационной платформой на борту для поддержки связи на площади около 800 тысяч км².

Возможно, дирижаблям найдётся применение и в разрабатываемой американцами программе Future Combat Systems. Именно с помощью дирижаблей высокой грузоподъёмности США планируют перебрасывать технику к местам военных конфликтов. В 2005 году Агентство передовых оборонных исследовательских проектов Пентагона объявило о разработке программы строительства сверхтяжёлого транспортного дирижабля «Walrus» с грузоподъёмностью от 500 до 1000 тонн. Дальность полёта должна была составлять около 22 тыс. км, которые он должен был преодолеть за неделю. DARPA также по заказу ВВС США провела изыскания в области разработки разведывательного аэростата, способного действовать на верхней границе стратосферы, то есть на высоте порядка 80 км. Фактически это будет суборбитальный аппарат.

Современный полужёсткий дирижабль «Zeppelin NT», Германия. Дирижабли этого типа производятся с 1990-х годов немецкой компанией Zeppelin Luftschifftechnik GmbH в Фридрихсхафене. Это дирижабли объёмом 8225 м³ и 75 м в длину. Они значительно меньше, чем старые Цеппелины, которые достигали максимального объёма в 200 000 м³. Кроме того, они наполнены исключительно невоспламеняющимся гелием.

В феврале 2005 года в Ираке Пентагон провёл испытания дирижабля «MARTS», который снабжён аппаратурой, позволяющей поддерживать связь с подразделениями в радиусе 180 км. Он способен противостоять ветру до 90 км/час и в течение двух недель висеть в воздухе без наземного обслуживания.

Американская компания «JP Aerospace» готовит к испытаниям 53-метровый V-образный дирижабль «Ascender». Первый полёт предусматривает подъём на высоту около 30 км и возвращение на землю. В случае успешных испытаний Пентагон предполагает возможность открыть финансирование на постройку крупного трёхкилометрового V-образного дирижабля стратосферного назначения.

Европа

Компания Aerospace Adour Technologies совместно с французской почтовой службой изучает возможность эксплуатации дирижаблей для транспортировки посылок. Другая французская компания, Theolia, специализирующаяся на возобновляемой энергии, финансирует строительство дирижабля и планирует тестовый перелёт через Атлантику.

Германская компания Deutsche Zeppelin-Reederei использует дирижабли нового поколения для перевозки туристов и научных грузов. В прошлом году пассажирами компании стали 12 тысяч человек. По причине нестабильности и зависимости дирижаблей от погоды компания осуществляет полёты только с марта по ноябрь.

Однако технические сложности, ограниченные финансовые средства, а также малый срок, имевшийся у зачинателей мероприятия перед переходом на самоокупаемость, сделали проект довольно рискованным — выяснилось, что собранных в результате продажи акций средств было недостаточно для доведения проекта до конца. В итоге 7 июня 2002 года компания объявила о своей несостоятельности и начале процедуры ликвидации с начала следующего месяца. Судьба 300 млн евро, вырученных в результате продажи акций более чем 70 000 инвесторам, по-прежнему неясна.

В июне 2003 года объекты были распроданы компанией за менее чем 20 % от стоимости расходов на строительство. Ангар-гигант ныне используется в качестве парка развлечений под названием «Тропические острова», который открылся в 2004 году.

Устройство современных дирижаблей и их данные

1. Дирижабли мягкой системы

Дирижабли мягкой системы не имеют никаких жестких креплений или распорок в своей газовой оболочке. Оболочка дирижаблей мягкой системы представляет собою многослойную прорезиненную ткань. Швы отдельных частей такой оболочки при сшивании тщательно заделываются. Общая форма дирижабля приближается к каплевидной, т. е. несколько утолщенной в передней части и с большим заострением задней для большей удобообтекаемости. Так как в случае прогиба оболочки и изменения благодаря этому формы дирижабля последний теряет свои расчетные аэродинамические качества, становится малопослушным в управлении или непослушным вовсе, что часто приводит к гибели, то понятно, что совершенно необходимо сохранение постоянства формы самого дирижабля.

Это достигается посредством помещенных внутри газовой оболочки особых воздушных мешков, называемых баллонетами.

В случае большой утечки газа, сморщивания или прогиба мягкой оболочки дирижабля баллонеты можно накачать воздухом настолько, что, расширяясь, они сожмут подъемный газ в дирижабле, и восстановленное давление газа вновь выравняет наружный профиль дирижабля. Для более детального ознакомления с устройством дирижаблей мягкой системы мы приводим описание современного нового малого дирижабля указанной системы воздушного флота Великобритании, известного под маркой АД-I.

Оболочка дирижабля АД-I покрыта алюминиевым составом, что в значительной мере предотвращает нагревание дирижабля солнцем. Так как носовая часть при полете воспринимает наибольшее давление, то в дирижабле АД-I она укреплена 24 деревянными ребрами, обмотанными проклеенной лентой и вшитыми в оболочку; ребра сходятся у носовой металлической головки. Баллонетов у АД-I два: передний и задний. Воздух в баллонеты нагнетается особым воздухоулавливателем, который может быть установлен в потоке, отбрасываемом пропеллером. На случай необходимости маневрирования баллонетами при остановленном моторе и отсутствии поступательного движения для накачки баллонетов применяется добавочный нагнетатель в 1 л. с., соединенный трубой с основным воздухопроводом.

Пилот имеет возможность регулировать накачку переднего и заднего баллонетов по своему желанию. Вместимость обоих баллонетов достигает 28 % всего объема оболочки дирижабля (рис. 7).

Рис. 7. Схема дирижабля мягкой системы АД-I (английский): 1 - носовые ребра; 2 - разрывное полотнище: 3 и 13 - баллонеты; 4 - поясная веревка; 5, 9, 11 - клапанная веревка; 6 - лыжа; 7 - стойка, к которой крепится фюзеляж; 8 - воздухонадуватель; 10 - воздухопровод к баллонетам; 12 - центр подъенной силы: 14 - тяга к рулю высоты; 15 - стабилизатор и руль высоты; 16 - тяга руля направления; 17а - киль; 17б - руль направления (поворота); А - воздушные клапаны; Г 1 - газовый клапан маневренный; Г 2 - газовый клапан автоматический и 18 - фюзеляж.

У дирижабля имеются 2 газовых клапана. Первый клапан - маневренный, находится в верхней части оболочки, а второй - автоматический, находится позади, в нижней части оболочки. Этот клапан открывается в случае возрастания давления до 40 мм водяного столба. Баллонеты в нижней части имеют воздушные клапаны, управляемые пилотом. В передней части оболочки дирижабля имеется так называемое «разрывное приспособление», позволяющее быстро выпустить газ в случае необходимости.

Гондола по своему внешнему виду похожа на фюзеляж (остов) самолета. Она имеет спруссовые ланжероны и покрыта фанерой. Гондола подвешивается к оболочке гибкими стальными тросами. На дирижабле, в передней части гондолы, установлен мотор Хорнет, 75 л. с., воздушного охлаждения. Выхлопные трубы проходят под гондолой. В гондоле кроме экипажа помещается горючее и смазочное для моторов, а также и водяной баласт.

Снизу гондола имеет специальную лыжу, прикрепленную на стальных подкосах. Лыжа сделана из ясеня и окована металлом. Назначение лыжи - предохранить от поломки пропеллер при спуске дирижабля на землю. На перилах гондолы укрепляются: гайдроп, якорь и мешки с песочным баластом. Для предохранения от электрических разрядов все металлические части дирижабля соединяются медной проволокой. Дирижабль поднимает всего 3 человека.

Обычный объем мягких дирижаблей не более 6000 куб. м. Наибольшие по объему типы мягких дирижаблей не превышают обычно 15 000 куб. м, что объясняется чрезвычайной трудностью сохранения постоянства формы дирижабля, которая растет с размерами дирижабля.

Данные современных мягких дирижаблей приведены в таблице 12.

Таблица 12. Данные современных мягких дирижаблей

Страна Название дирижабля Год постройки Мотор и мощность в л. с. Объем в куб. м Полезный груз Экипаж Скорость в км/ч Продолжительность полета в час Назначение
Англия АД-I 1928/29 Хорнет 75 1700 680 кг 2–3 Наибольш. 80 15
Англия Коммершел-Эршен 1928 - 6240 - - Крейсерск. 56 - Учебный
Франция Зодиак-Вест 1925 2 Испано по 150 4000 1,7 т - 85 - Военный (морской)
САСШ ТС-6 1928 2 Райт по 150 5600 1,8 т 10 96 21 Учебный
Германия. Рааб-Катценштейн 27 - Анзани 35 1435 0,5 т 4 70 9 Рекламный

2. Дирижабли полужесткой системы

Дирижабли полужесткой системы конструктивно отличаются от дирижаблей мягкой системы наличием жестких креплений оболочки. Эти креплении в первоначальных типах были в виде штанг, идущих вдоль нижней части дирижабля. В современных дирижаблях полужесткой конструкции полужесткость осуществляется специальной платформой, идущей по всей нижней части оболочки дирижабля. Дополнительные крепления у дирижаблей полужесткой системы, обеспечивающие большую, чем у дирижаблей мягкой системы, сохранность формы оболочки дирижабля, позволяют их строить большего размера, чем дирижабли мягких систем. Объем их достигает 50 000 куб. м. Естественно, что скорость, грузоподъемность, радиус действия, возможная высота полета и вместе с тем стоимость и сложность постройки - больше чем у дирижаблей мягкой системы (рис. 8).

Рис. 8. Французский полужесткий дирижабль Зодиак V-10.

Общую схему устройства современного дирижабля полужесткой системы и некоторые детали устройства можно уяснить по конструкции итальянского дирижабля полужесткой системы под названием «Норвегия», известного своим полетом к северному полюсу, а также дирижабля «Италия» конструктора и водителя Умберто Нобиле. Вместо сплошной газовой камеры Нобиле ввел в своих дирижаблях несколько отсеков, сообщающихся между собой небольшими отверстиями. Носовая и кормовая часть дирижабля имеют крепления в виде закаркашивания.

В нижней части дирижабле вдоль всего его корпуса идет трехугольная ферма из стальных труб. Моторы вынесены из кабины и помещены в специальных установках, крепящихся к верхним углам фермы. Внутри фермы, образующей как бы коридор, устроены каюты для экипажа, хранится баласт, горючее, продовольствие и т. д. Назначение фермы помимо крепления - передать равномерно по оболочке тяжесть нагрузки моторов, гондолы и груза, помещаемого в самой ферме (коридоре).

В верхней части оболочки пришит пояс, от которого внутри оболочки проходят тросы для распределения подвески.

Гондола крепится непосредственно к ферме. В ней помещается капитанская рубка, каюткампания, кухня и уборная (устройство рубки - рис. 9). Воздушные баллонеты у дирижабля Нобиле помещаются внизу над рамой. Воздух в баллонеты нагнетается через отверстие в носу дирижабля автоматически в полете.

Рис. 9. Внутренний вид капитанской рубки итальянского дирижабля «Италия».

Таблица 13. Данные полужестких дирижаблей

Название дирижабля и мотор Длина в м Высота в м Ширина в м Объем в куб. м Подъемная сила в т Экипаж Наибольшая скорость в км/ч
Италия
№ 1 3 мотора по 250 л. с. (Дирижабль Нобиле под названием «Италия») 105 26 19,5 19000 25 20 100
Франция
Зодиак V-10 - - - 3400 - 4 95

На рис. 10 - общий вид дирижабля «Италия» в полете.

Рис. 10. Общий вид дирижабля «Италия» в полете.

3. Дирижабли жесткой системы

Главнейшее отличие дирижаблей жесткой системы это наличие жесткого каркаса (остова), благодаря которому получается возможность сохранять неизменность формы дирижабля. Каркас делается обычно из дюралюминиевых труб или полос различного вида профилей; только каркас недавно погибшего английского дирижабля R-101 был построен преимущественно из высокосортной стали. Каркас состоит из многоугольных поперечных рам, называемых шпангоутами, соединенных между собою продольными фермами, называемыми стрингерами. Пролеты, образующиеся между продольными и поперечными частями, крестообразно расчаливаются проволоками.

Металлический каркас обтягивается специальной алюминированной материей: алюминирование оболочки имеет целью уберечь ее от чрезмерного нагревания солнцем. Подъемный газ (водород или гелий) содержится в нескольких газовых баллонах с газонепроницаемой оболочкой. Таких баллонов в современных дирижаблях бывает до 20, помещаемых в специальных газовых отделениях (отсеках), на которые делится каркас дирижабля. Газовые баллоны делаются из специального материала - «бодрюша», получаемого путем обработки брюшины телят, отличающегося исключительной газонепроницаемостью и легкостью. Между шпангоутами устроена вентиляция, для того чтобы не допускать образования крайне опасного гремучего газа (смеси водорода с кислородом). На дирижабле устанавливаются 5–8 мощных многосотсильных моторов, которые помещаются в специальные гондолы, имеющие жесткую подвеску к корпусу дирижабля. Иногда один мотор устанавливается так, чтобы с его помощью дирижабль мог иметь задний ход, что бывает нужно при подходе к причальной мачте. Помещение экипажа и командирская рубка у последних типов дирижаблей находятся в передней половине внизу, ближе к носу. По всей длине дирижабля проходит внутренний коридор, в котором размещаются: бензин и масло в специальных баках, водяной баласт в мешках, запасные части для моторов, помещение для экипажа, якорные канаты и т. д. В командирской рубке сосредоточены все приборы для управления и навигации. Все рули помещаются на корме оболочки. Внешняя форма дирижаблю придается сигарообразная для того, чтобы дирижабль в полете был более удобообтекаем и тем самым вызывал меньшее сопротивление воздуха при полете. На германских военных дирижаблях в империалистическую войну 1914–1918 гг. нижняя сторона корпуса дирижабля окрашивалась в черный цвет, для того чтобы ночью дирижабль был менее заметен на фоне неба при свете прожекторов, а в верхней части дирижаблей помещались специальные кабинки для наблюдателя с пулеметом для воздушного боя с самолетами.

В носовой части дирижабля имеются люк и откидная площадка, которая при причаливании соединяется трапом со швартовой мачтой. Кроме того на носу имеется специальное причальное приспособление.

Экипаж дирижабля состоит из командира корабля, старшего и младшего помощников, вахтенных рулевых, метеоролога, навигатора (штурман), радиотелеграфистов, механиков, среднего и младшего технического персонала.

Схема устройства дирижаблей жесткой конструкции изображена (тип цеппелина) на рис. 11 и 12.

Рис. 11. Схема дирижабля жесткой системы (типа цеппелин).

Рис. 12. Поперечный разрез дирижабля жесткой системы (типа цеппелин).

В последнее время американцы построили 2 дирижабля несколько иной конструкции. Они реализовали идею, высказанную ранее ученым Циолковским и сделали жестой самую оболочку дирижабля, изготовив ее из металлических гофрированных листов. Оболочка такого дирижабля служит непосредственным газовместилищем и вместе с тем способна сохранять форму дирижабля при наличии немногих внутренних рам. Таким путем достигается жесткость и прочность конструкции. Американцы заявляют; что эти дирижабли в три раза прочнее существующих конструкций и на 30 % легче. Более подробное описание такого типа дается ниже по сведениям об одном из двух построенных американцами металлических дирижаблей ZMC-2.

Устройство американского цельнометаллического дирижабля ZMC-2 . Проект этого дирижабля принадлежит инж. Р. Эпсону. Объем дирижабля - всего 5600 куб. м. Каркас сделан из дюраля и состоит из 5 главных и 12 промежуточных трехгранных поперечных шпангоутов и 24 продольных стрингеров корытообразного сечения. Цельнометаллическая оболочка сделана из полос шириной от 15 до 45 см, толщиной в 1/4 мм, соединенных тройными заклепочными швами, промазанными изнутри особой смоляной мастикой.

Рис. 13. Американский цельнометаллический дирижабль ZMC-2 при выводе из элинга.

Рис. 14. Американский цельнометаллический дирижабль ZMC-2 при посадке

Подъемный газ (гелий) помещается непосредственно в металлической оболочке, внутри которой имеются 2 воздушных баллонета: один в передней, другой - в кормовой части. При наполнении воздухом баллонеты занимают около 25 % всего объема дирижабля. Назначение баллонетов - регулировать давление подъемного газа в оболочке. В дирижабле ZMC-2 все нагрузки, которые дирижабль испытывает, воспринимаются не только каркасом, но и оболочкой. Таким образом за счет работы по сохранению формы дирижабля, которую несет металлическая оболочка дирижабля, удалось уменьшить прочность каркаса, а тем самым и его вес. Исходя из опыта работы со своими цельнометаллическими дирижаблями, американцы считают, что металлическая оболочка значительно более газонепроницаема, чем специальные, обычно употребляемые сорта материи бодрюша (обработанная брюшина телят). Моторная установка ZMC-2 состоит из двух двигателей Райт-Уирлуинд по 220 л. с. воздушного охлаждения, помещающихся по обе стороны гондолы. Стоимость дирижабля - 600000 руб. Общий вид дирижабля - на рис. 13, 14, и 15.

Рис. 15. Кабина и моторные установки дирижабля ZMC-2.

Устройство английского дирижабля R-101 . Английский дирижабль R-101, которого постигла недавно страшная катастрофа во Франции у города Бове и при перелете из Англии в Индию, был по своему конструктивному оформлению единственным в мире. Вместо дюралюминия материалом для его каркаса была применена высокосортная сталь; таким образом это был первый и единственный в мире стальной воздушный гигант (рис. 16). R-101 вместе с R-100 был начат постройкой в 1925 г. Оба дирижабля предназначались для транспортной службы между Англией и Канадой и Англией и Индией. Одновременно с их постройкой англичанами проводилась большая работа по наземному оборудованию этих линий: строились причальные мачты, элинги, заводы, изготовляющие водород. R-101 строился на правительственной верфи; R-100 строила частная фирма «Виккерс». 17 сентября 1929 г. R-101 сделал свой пробный 5-часовой полет. Данные, полученные англичанами при первых испытаниях дирижаблей R-101, оказались малоудовлетворительными. Дирижабль был перетяжелен. Строя R-101, англичане переборщили с учетом причин гибели своего дирижабля R-38 и американского «Шенандоа». Желая гарантировать прочность дирижабля как в отношении статических нагрузок, так и вызываемых аэродинамическими усилиями при различных режимах полета, англичане получили чрезмерно тяжелый дирижабль со всеми вытекающими отсюда пилотажными и эксплоатационными недостатками. Это обстоятельство в конечном итоге принудило их переделать R-101. Было решено разрезать дирижабль пополам и вставить дополнительно еще один отсек. Операция эта удалась. После переделки на пробных полетах R-101 показал несколько лучшие качества.

Рис. 16. Английский дирижабль R-101.

В течение 1 1/2, лет англичане проводили исследование над деталями и моделями дирижабля. В результате этих работ при строительстве R-101 был применен ряд конструктивных особенностей.

Во-первых превышение длины над поперечным сечением было уменьшено; лабораторные исследования показали, что удобообтекаемость более толстого, не имеющего цилиндрической части дирижабля лучше, тем более что при этом легче сделать каркас более прочным.

Каркас R-101 состоял из 15 поперечных шпангоутов, 15 главных и 15 промежуточных стрингеров. Каждый шпангоут представлял собой жесткое решетчатое 15-угольное кольцо, состоявшее из двух внешних и одного внутреннего пояса, соединенных между собою поперечными связями. Каждый элемент пояса был сделан в виде жесткой трехгранной балки, склепанной из 3 стальных труб, соединенных между собою дюралюминиевыми полками с выштампованными в них для облегчения отверстиями. Элементы стрингера были сделаны из труб диаметром в 1 3/4 дюйма, свернутых из стальных полос с заделанным изнутри швом. При большой длине (до 22,5 м) такие трубы оказались более равномерными и прочными, чем цельнотянутые. Жесткость решетки увеличивалась тросовыми растяжками. Каркас R-101 не имел киля, что было возможно благодаря особой прочности и конструкции всего каркаса. Главной опорой каркаса R-101 являлись шпангоуты, продольные части каркаса являлись как бы вспомогательными в отличие от германских цеппелинов, у которых главные усилия воспринимаются стрингерами.

Следующей особенностью R-101 было крепление газовых мешков. Из полюса, располагавшегося в средней плоскости шпангоута, когда давления в 2 прилегающих мешках были одинаковы, расходились меридианально лучами в оба отсека тросы, охватывавшие мешки. В середине отсека эти тросы прикреплялись к цепям, которые в свою очередь сцеплялись системой спусков с узлами шпангоутов. Таким образом эти цепи образовали как бы края парашютного паруса. Этим путем большая часть подъемных усилий передавалась на нижнюю часть шпангоутов, остальная же часть их воспринималась поперечными кольцами из тросов, охватывавших мешки и передававших усилия на все панели шпангоутов тоже посредством спусков. Благодаря такой системе все усилия сосредоточивались в узлах, и таким образом стрингеры подвергались только продольному сжатию, а не испытывали поперечных нагрузок. Исчезла и поперечная нагрузка на панели шпангоутов.

Оболочка R-101 была сделана из льняного полотна, для водонепроницаемости покрытого алюминиевой краской. Оболочка имела очень гладкую поверхность, что способствовало уменьшению трения, и была очень легка: 1 кв. м ее весил 150 г. Газовые мешки были из бодрюша и покрывались особым составом для предохранения от действия солнца.

Сохранение оболочкой правильной и гладкой поверхности достигалось тем, что в носовой части оболочки по окружности был сделан ряд отверстий. Во время полета встречный поток воздуха поступал через эти отверстия внутрь оболочки, создавая давление изнутри (рис. 17).

Рис. 17. Нос дирижабля R-101; видны отверстия для поддержания внутреннего давления, трап для выхода (Платформа причальной мачты и три люка для выбрасывания причальных концов.).

Все жилые и грузовые помещения дирижабля находились внутри оболочки. Вне оболочки была устроена только пилотская рубка. Помещения для пассажиров и команды располагались двумя ярусами в нижней части 6-го и 7-го отсеков. Верхний ярус имел 25 двухместных спальных кают, салон (рис 18), столовую на 50 человек и 2 широких коридора для прогулок. В нижнем ярусе помещались: кухня, оборудованная электрическими приборами, курительная комната, помещения для экипажа и капитанская (навигаторская) рубка. В этой капитанской рубке находилось большинство инструментов и радиостанция (приемная и передающая). Все помещения соединялись телефоном. Для сообщения между отдельными частями дирижабля по всей его длине шел коридор шириной в 0,9 м, от которого шли поперечные боковые проходы. По подвесным трапам из коридора можно было попасть в моторные гондолы. В носовой части коридор заканчивался причальной каютой, в которую был пропущен причальный шпиль. В причальной каюте находились все приспособления для соединения с вращающейся частью причальной мачты, для приема воды масла, нефти и т. д.

Рис. 18. Салон на борту дирижабля R-101.

Винто-моторная группа дирижабля состояла из 5 двигателей Бирдмор «Торнадо», работавших на тяжелом горючем. Баки для нефти вмещали 44 т. Нормально они загружались только до 29 т. Емкость водяных баков была 15 т.

Дирижабль предназначался для работы на линии Лондон - Карачи (Индия). По расчетным данным он должен был брать 100 пассажиров и 10 т груза. Фактически, как потом оказалось, он мог брать в рейс примерно только 50 пассажиров и 7 т груза.

На рис. 19 показана деталь дирижабля: моторная гондола.

Рис. 19. Левая передняя моторная гондола дирижабля R-101 с реверсивным пропеллером.

Причины трагической гибели дирижабля описаны ниже в главе «Недостатки современных дирижаблей».

Американские дирижабли ZRS-4 и ZRS-5 . Оба дирижабля предназначаются для обслуживания военно-морского флота. Дирижабли ZRS-4 и ZRS-5 имеют объем почти вдвое больший, чем германский LZ-127 («Граф Цеппелин») и на 35 % больше английских дирижаблей R-100 и R-101. Сравнительная таблица (табл. 14) дает общую характеристику и размеры этих дирижаблей.

Таблица 14 (стр. 41)

Технические данные Американский дирижабль Лос-Анжелос Германский LZ-127 Американский ZRS-4
1. Объем в куб. м 70000 105000 184500
2. Длина в м 200 235 239,5
3. Диаметр миделя в м 27,6 30,5 40,6
4. Полная высота 31 37,5 49,8
5. Подъемная сила в английск. фун. 153000 258000 403000
60000 - 182 000
7. Число моторов 5 5 8
8. Общая мощность моторов в л. с. 2000 2750 4480
9. Максимальная скорость в км/ч 118 128 135
10. Дальность полета при 95 км/ч 6400 9850 17700

В отношении своего внешнего вида по сравнению с другими дирижаблями оба указанные американские дирижабля не так продолговаты, а наоборот более коротки и широки. Конструкция скелета основана на тех же принципах, что и у цеппелина, и имеет 3 элемента:

1) жесткий металлический каркас, имеющий своим назначением противодействовать силам, действующим на дирижабль (подъемная сила газа, тяжесть, силы динамические и аэродинамические);

2) газовые камеры, содержащие подъемный газ;

3) внешняя оболочка из малопроницаемой металлизированной ткани, сопротивляющейся атмосферному влиянию и отражающей, а не поглощающей тепло; оболочка эта сделана с гладкой, несколько скользкой поверхностью.

Остов составляет 36 многоугольных поперечных рам (рис. 20). Они соединяются продольными балками, идущими от носа до кормы дирижабля.

На скелет, составленный таким образом, сосредоточивается давление газовых камер. Главные поперечные рамы отстоят друг от друга на расстоянии около 24 м, а между ними помещаются газовые камеры; камер этих в дирижабле 12. Продольные балки, соединяя кольцевые рамы, создают благодаря своим размерам и конструкции коридоры, дающие возможность прохода по ним вокруг дирижабля, что облегчает обслуживание и достижение сохранности. Кольцевые промежуточные рамы состоят из отдельных балок и расставлены между главными большей частью в числе 3 штук; их назначение - поддерживать поперечные балки, соединяющие главные кольцевые рамы.

Почти через всю длину дирижабля идут 3 прохода, или коридора, которые в поперечном разрезе имеют вид равностороннего треугольника. Один из этих коридоров находится в верхней части дирижабля, а 2 другие помещаются симметрично в его нижней части. В более ранних системах помещался только 1 коридор между носом и кормой дирижабля.

Рис. 20. Остов американского дирижабля ZRS-4.

Дальнейшей особенностью, заслуживающей внимания, являются предохранительные клапаны. Роль их заключается в том, что они должны автоматически открываться, когда давление подъемного газа от расширения под влиянием высоких температуры и барометрического давления достигнет опасной величины, и выпускать часть газа наружу. Все газовые камеры имеют такие автоматические предохранительные клапаны в своей верхней части. Доступ к этим клапанам имеется из верхнего коридора, что дает возможность легко проверять их исправность. Это важное устройство в предшествующих типах дирижаблей не было предусмотрено.

В отношении оперения дирижабля заслуживает внимания то, что управление рулями возможно как из пилотской гондолы, так и - в случае внезапной порчи тросов между рулями и гондолой - при помощи устройства, имеющегося в нижнем заднем коридоре руля направления.

Гондола, в которой сосредоточено управление дирижаблем, находится в передней нижней части его, выступая несколько наружу, но составляя с корпусом дирижабля одно целое. Предназначена она для командира и ближайших его помощников и оборудована всеми новейшими приборами аэронавигационной техники. Кабина для радиотелеграфиста и команды помещается внутри дирижабля. Помещения эти очень удобны и достаточно обширны. Радиостанция дирижабля имеет 2 передатчика с отдельными антеннами на 800 км и на 8000 км, имеется радиоприемная аппаратура.

Моторы помещаются в 4 машинных кабинах, составляющих одно целое с остовом дирижабля и расположенных по обе его стороны.

Дирижабль имеет 16 пулеметов и 5–6 самолетов.

Важное усовершенствование составляет применение косых шестеренок на выступающих наружу валах моторов, благодаря которым установка может работать не только в направлении продольной оси дирижабля (вперед и назад), но также и в направлении, повернутом к оси установки на 90° (рис. 21). Приспособление это имеет большое значение при взлете и посадке. Оно позволяет также поднять большой груз и избежать потери газа при спуске.

Рис. 21. Поворотная установка винта на новых американских дирижаблях.

Другое приспособление, открывающее новые технические возможности, имеет целью устранение нежелательного явления - уменьшения веса дирижабля (и увеличения подъемной силы) по мере расхода горючего на работу моторов, что вызывало необходимость выпуска дорогостоящего подъемного газа. В германском дирижабле LZ-127 этот недостаток устранен путем использования в качестве горючего для мотора - газа такого же веса, как воздух, называемого «крафтгазом». Расход такого газообразного горючего в полете не отзывается на весе дирижабля.

В американском дирижабле ZRS-4 (рис. 22) этот вопрос разрешен другим способом, а именно путем установки на моторах конденсаторов выхлопных газов. Это стало возможным благодаря тому, что химический процесс горения газолина и поглощения кислорода из воздуха приводит к обильному насыщению водяными парами отработанного газа, тем самым значительно увеличивая его вес относительно веса сожженного в моторах газолина. Это позволяет брать водяной баласт в ограниченном количестве. Правда, такие установки будут очень громоздкими и тяжелыми.

Рис. 22. Американский дирижабль ZRS-4 (Акрон) над линейным кораблем.

Одной из наиболее интересных особенностей описываемых дирижаблей является наличие на них помещения для перевозки целиком собранных самолетов. Размеры этого помещения (ангара) - 23 м длины и 18,3 м ширины на расстоянии 1/3 длины дирижабля от его носа. Раздвижные двери на дне дирижабля закрывают отверстие в виде буквы «Т», через которое может быть опущен или поднят самолет. Самолеты могут сами подцепиться (по другим данным самолеты садятся на площадку, находящуюся с верхней стороны дирижабля) или отцепиться во время полета дирижабля. Кроме того дирижабль дооборудуется корзиной, которую можно было бы выпускать на сотни метров вниз. Что касается безопасности дирижабля, то она достигнута в значительно большей степени, чем у других дирижаблей, благодаря продуманности конструкции, применению многих дополнительных усовершенствований, обеспечивающих безопасность, малой пожарной опасности и обеспечению доступа ко всем частям дирижабля.

Увеличение конструктивной устойчивости дирижабля дает ему возможность иметь:

1) быстрые вертикальные и горизонтальные изменения направления движения;

2) полет при большом угле наклона в вертикальной плоскости;

3) полет при максимальной скорости в полосе сильных порывов ветра.

Пожарная опасность сведена к минимуму благодаря применению в качестве подъемного газа - гелия, который, как известно, не горюч.

Для предупреждения воспламенения горючего (газолин) кабины, в которых оно помещается, имеют специальное оборудование. Весь дирижабль вентилируется во избежание скапливания паров газолина, а электрическая проводка специально обеспечена от возможности коротких замыканий.

Уменьшена также опасность электрических разрядов во время грозы тем, что все металлические части соединены между собою и могут реагировать, как клетка Фарадея, сильно рассеивая электрический разряд.

Наконец благодаря существующему доступу ко всем частям дирижабля есть возможность контроля работы всех приборов и приспособлений, а в случае поломки - и производства соответствующего ремонта.

Американские дирижабли ZRS-4 и ZRS-5 являются последним словом дирижаблестроительной техники и будут самыми мощными в мире (рис. 23).

Рис. 23. Дирижабль ZRS-4 (Акрон) над Нью-Йорком.

Первый полет дирижабля состоялся 23 сентября 1931 г. На борту его находилось 112 человек, среди них морской министр САСШ. Дирижабль находился в воздухе около 4 часов. После вполне успешных испытаний он был зачислен в состав морских военновоздушных сил.

Опыт работы германского дирижабля LZ-127 «Граф Цеппелин» и его устройство . Германский дирижабль LZ-127 является лучшим типом современных дирижаблей, исключительные качества которого были проверены в течение ряда лет многочисленными перелетами, порой - в чрезвычайно неблагоприятных метеорологических условиях (рис. 24).

Рис. 24. Германский дирижабль LZ-127 при полете.

С момента постройки, 9 сентября 1928 г., до ноября 1929 г., когда дирижабль после кругосветного перелета был введен в элинг на зимнюю стоянку, им было совершено 50 полетов общей продолжительностью в 1186 часов и пройден воздушный путь в 116985 км. За это время на дирижабле было перевезено 1574 человека, считая и экипаж, почты и грузов - 4882 кг. Дирижаблю приходилось летать при температурах от -10° до +30°, при ветре силой до 30 м/сек и на высотах от 150 до 2700 м; за всю эту долгую и интенсивную эксплоатацию дирижабль имел всего три случая неисправности материальной части.

Во время первого полета из Европы в Америку дирижабль в пути над океаном был застигнут бурей. Сильным порывом ветра у него была прорвана обшивка стабилизатора. Несмотря на это дирижабль все же выдержал бурю. Исправление стабилизатора было произведено в воздухе во время продолжавшегося полета.

При вторичном полете из Европы в Америку - также над океаном, правда, недалеко от французского берега, - у дирижабля обнаружились дефекты в моторах. Все же дирижабль оказался в состоянии возвратиться во Францию где моторы были приведены в порядок, после чего дирижабль благополучно совершил перелет в Америку.

Третья авария - повреждение гондолы при переводе из элинга в Токио.

Все перечисленные поломки, имевшие место с дирижаблем LZ-127, вовсе не говорят об его конструктивной слабости, а скорее всего могут быть отнесены к нормальным поломкам при эксплоатации. И даже наоборот весь летный стаж LZ-127 и особенно его арктический полет 1931 г. совершенно определенно подтверждают, что указанный дирижабль является одним из первых образцов мощных и надежных воздушных кораблей, конструктивные особенности которого и должны лечь в основу всех последующих конструкций дирижаблей этой системы.

Таблица 15

Кругосветный перелет был начат дирижаблем из своей базы - Фридрихсгафена 15 августа 1929 г. в 4 ч. 35 мин. Через 100 час. 35 мин. бесперерывного полета дирижабль достиг Токио, где и опустился. При выводе дирижабля из элинга были помяты гондолы, что задержало его для производства ремонта.

Вторую остановку дирижабль сделал после перелета через Тихий океан, на западном побережьи Америки, в г. Лос-Анжелос.

Третья посадка была произведена после пересечения Америки, недалеко от Нью-Йорка, в г. Лекхёрсте (американской воздухоплавательной базе).

Всего в пути дирижабль был 20 суток, покрыв расстояние в 35000 км при средней скорости 117 км/ч. Кругосветным перелетом дирижабль установил 2 рекорда:

1) дальности полета по прямой - 11247 м (на маршруте Фридрихсгафен - Токио).

2) скорости полета - 127,5 км (на участке Америка - Европа).

В следующем 1930 г. дирижабль LZ-127, руководимый своим конструктором и водителем Гуго Эккенером, вновь совершил удачный полет по маршруту Европа - Южная Америка.

В июле 1931 г. Арктической комиссией был организован полет в Арктику на острова Новой земли, Земли Франца Иосифа и Северной земли.

В состав экспедиции входили и наши советские ученые: профессоры Самойлович и Молчанов и радиоспециалист Кренколь. Успешные полеты LZ-127 приобретают особо важное значение в деле дирижаблестроения, так как целый ряд аварий и гибели других дирижаблей и в частности гиганта R-101 вредно отразились на общественном мнении и не способствовали идее дирижаблепользования. LZ-127 с убедительной очевидностью показывает, что уже современная техника позволяет иметь вполне надежный воздушный корабль и что случаи мелких поломок у LZ-127 нужно отнести за счет нормальных эксплоатационных повреждений, от которых не гарантирован любой механизм и прибор, даже находящийся на земле, а не то что в атмосфере.

Характеристические данные дирижабля указаны в ниже помещаемой таблице. По опыту LZ-127 немцы строят новые дирижабли больших размеров, чем LZ-127. Эти новые гиганты LZ-128 (заканчивается в 1932 г.) и LZ-129.

По своей общей конструкции LZ-127 построен по обычной схеме германских цеппелинов. Дирижабль имеет дюралюминиевый каркас и матерчатую обтяжку. В качестве подъемного газа используется водород. Отличительной особенностью LZ-127 является использование в качестве горючего для моторов - крафтгаза.

Значение применения этого горючего описано в отделе «Пути дальнейшего технического совершенствования» в разделе «Проблема моторов и горючего». Детали устройства LZ-127 - на рис. 25 (см. на 116–117 стр.).

4. Подъемные газы, используемые в дирижаблях

Водород . Атомный вес - 1,008. Газ легче воздуха в 14,4 раз. Химический знак Н. Затвердевает при -259°. Без цвета, запаха и вкуса.

Требования к водороду, поставляемому воздушному флоту.

1. Водород должен быть совершенно бесцветным и не иметь запаха.

2. Вес 1 куб. м газа при 0° и 760-мм давлении должен быть не более 0,09 г.

Таблица 16. Данные современных жестких дирижаблей

Страны Дирижабль и моторы Длина в м Высота в м Ширина в м Объем в куб. м Подъемная сила в т Вес конструкции в т Поднимаемый груз в т Экипаж (чел.) Запас горючего в т Баласт, почта, бомбы в т Наибольшая скорость км/ч Крейсерская скорость км/ч Дальность поле а в км
Англия R-100, 6 моторов Рольс-Ройс по 700 л. с. 216,1 39,6 39,6 141 600 157 92 65 35+60 * 32 8 130 120 5 700
Англия R-101, 6 ** Рольс-Ройс *** по 700 л. с. 225,5 39,6 39,6 141 600 156 103 53 35+60 26 12 132 120 4 000
Германия Цеппелин LZ-127, 5 моторов Майбах по 530 л. с. 235 37, 5 30,5 105 000 **** 85 55 30 26+20 8 12 128 117 10 000 км при 15 т полезного груза
САСШ Лос-Анжелос ZR-3 5 Майбах по 400 л. с. 200 31 27,6 70000 83 37 43 - 17 - 119 109 -
САСШ Гудиир ZR-4, 8 Майбах по 600 л. с. 239,5 44,8 40,6 184 530 170 80 90 61 ****** 44 - 140 - 14 000 км *******
САСШ Слейт ***** паротурбинный 600 л. с. - - - 9 340 9,5 - - - - - 128 - -
САСШ ZMC-2 *****, 2 Райт Уирльуинд по 220 л. с. 45,6 16,2 16,2 5 760 5,55 4,14 1,41 3+4 0,65 0,19 600 80 от 11 000

Примечания .

* 35 чел. команды, 60 пассажиров.

** R-101 погиб во время перелета из Англии в Индию в 1930 г.

*** Фактическая мощность моторов оказалась меньше приведенной расчетной. Один из 6 моторов был установлен для обратного хода дирижабля.

**** Из них 30000 куб. м газа для питания моторов.

***** Целиком металлические.

****** Не считая весь обслуживающий персонал самолетов.

******* При скорости полета 130 км/ч - дальность полета 7 680 км, 108 км/ч - 10580 км, 90 км/ч - 14400 км, 72 км/ч - 20800 км.

Таблица 17. Современные гигантские самолеты в сравнении с дирижаблем LZ-127 «Граф Цеппелин»

Юнкерс С-38 (Германия) Фоккер Ф-32 (Америка) Белланка (САСШ) До-Х (Германия) Капрони 90-РВ (Италия) Диль и Бакалан 70 (Франция) Амфибия Сикорского (Америка) Рорбах-Бердмор «Инфлексибль» (Англия) Дирижабль LZ-127 «Граф Цеппелин»
Несущая поверхность 240 кв. м 125,4 кв. м 84,7 кв. м 467,7 кв. м 500 кв. м 200 кв. м 184 кв. м 183 кв. м Объем 105 000 куб. м. Длина 235 м.
Размах 45 м 30,2 м 25,35 м 48 м 47 м 37 м 34,7 м 47,9 м
Длина 23 м 21,1 м 13,46 м 40,050 м 28 м 21,3 м 22 м 23 м
Высота 6,5 м 5,64 м 3,89 м 6,45 м (от винтов до воды) 10,7 м 6,45 м
Наибольшая глубина крыла 10 м
Наименьшая глубина крыла
Общая мощность моторов (2 х 800, 2 х 400) 2 400 л. с. (4 х 525) 2 100 л. с. (2 х 425) 850 л. с. (12 х 525) 6 300 л. с. (6 х 1000) 6 000 л. с. (3 X 600) 1 800 л. с. (4 х 575) 2 300 л. с. (3 х 650) 1 950 л. с. (5 х 530) 2 650
Вес пустого самолета 13 000 кг 6 250 кг 3 170 кг При общем весе 25 т 7 700 кг
11 000 кг 3 950 кг 6 370 кг Пассажиров 169 (считая экипаж на дальность полета, равную 1 200 км) 5 300 кг 5 096 кг Полный вес 17 т в полет Подъемная сила 85 т
Вес 17 т 28 мест пассажирских. 41-местный 15 т на 10 000 км дальности полета
На 1000 км радиуса действия 7 800 кг Радиус действия 9 660 м (на 10-час. полет)
То же на 3500 км 3000 кг
14 000 кг 109,8 кг 70 кг
83 кг 81,2 кг 112,5 кг 84 кг
10 кг 4,86 кг 11,9 кг 8,58 л. с. 12 л. с.
Мощность на 1 кв. м 7,9 л. с. 16,6 л. с. 9,45 л. с.
Наибольшая скорость 200 км/ч 252 км/ч 226 км/ч 242 км/ч 210 км/ч 206 км/ч 128 км/ч
Наименование моторов Юнкерс Прат-Уитней Прат-Уитней Юпитер Фраскини Испано Прат-Уитней Рольс-Ройс Кондор Майбах
Потолок 5500 Горючего 1 600 л. Дальность полета 4 040 км (с нормальной нагрузкой) Дальность 2000 км с 8 8-т бомбами 3965

Примечание . Вместо моторов Юпитер на Дорнье ДХ поставлены 12 моторов в 600 л. с. каждый с водяным охлаждением, таким образом общая мощность моторов равна 7 200 л. с.

3. Подъемная сила водорода при нормальных условиях; должна быть не менее 1180 г на 1 куб. м объема.

5. Водород должен гореть несветящимся слабосиневатым пламенем, спокойно, без взрывов.

Способы добывания.

1. Абсолютно чистый водород получается гидролитическим способом путем разложения водой водородистого кальция.

2. Посредством разложения водяного пара раскаленным железом (способ Дальвина-Флейшера). Этот способ самый распространенный и дешевый.

3. Путем разложения углеводородов нефти в парообразном состоянии действием раскаленного кокса (способ Вольтер-Ринкера).

4. Электролизом хлористых солей, перерабатываемых в сухие щелочи. Водород при этом способе получается как побочный продукт в очень чистом виде. Способ этот также дешевый.

5. Действием алюминия и других металлов на растворы едких щелочей.

Гелий . Одноатомный элемент, относится к семейству так называемых «благородных» газов, стоящих в нулевой группе менделеевской таблицы; атомный вес - 3,99; плотность по отношению к воздуху - 0,137:1 куб. м химически-чистого гелия при 0° и 760 мм давления весит 0,1785 кг (гелий в 7,2 раза легче воздуха и в 2 раза тяжелее водорода); подъемная сила 1 куб. м гелия при тех же условиях - 1,114 кг (т. е. 92,6 % от подъемной силы водорода). Гелий - газ без цвета и запаха, вполне инертен в химическом отношении, не горюч и не поддерживает горения, не входит ни в одно из известных химических соединений и не принимает никакого участия в химических реакциях, мало растворим в воде, совершенно нерастворим в бензине и алкоголе. Гелий с трудом превращается в жидкое состояние (впервые жидкий гелий был получен в 1907 г. Каммерлинг-Оннесом путем охлаждения гелия до температуры -258° жидким водородом, кипевшим под пониженным давлением); в этом виде гелий подвижен, бесцветен и является самой легкой после водорода жидкостью. Поверхностное натяжение жидкого гелия слабое; наибольшая плотность - 0,1459 при температуре -270,6°. Теплопроводность гелия при 0° по опытам Шварца 0,0003386. Из всех газов после неона гелий - лучший проводник электричества; его диэлектрическая крепость - 18,3 (для неона - 5,6, для воздуха 4, - 19).

Извлечение гелия из воздуха (обычно методами фракционировки жидкого воздуха) ввиду малого процентного содержания его, а также ввиду сложности отделения гелия от других газов, например неона (неона в воздухе в 3 раза больше, чем гелия), имеет только лабораторный характер. В минералах гелий находится в окклюдированном состоянии, будучи заключен в мелких порах минерала.

Применением гелия устраняется опасность воспламенения газа в дирижаблях, а также достигается возможность помещать моторы не в подвесных гондолах, как обычно, а внутри оболочки, что значительно уменьшает лобовое сопротивление и следовательно увеличивает скорость корабля. Благодаря более медленной, чем у водорода, дифузии гелия через оболочку подъемная сила дирижабля сохраняется лучше. Большое преимущество гелия - возможность легкой очистки уже использованного газа от загрязняющих его примесей, что достигается путем пропускания его через специальные очистительные аппараты.

Помимо воздухоплавания гелий применяется в сравнительно небольших количествах и в других областях техники, а также для научных исследований, в частности для изучения различных процессов и свойств тел при очень низких температурах (испарением жидкого гелия достигнута температура -272,1°). Богатые источники гелия находятся в Америке. Главные из них - в Техасе. Запасы американских источников гелия определяются в 50 млн. куб. м при годовом выходе 1,6 млн.

Способы добывания. Чистый гелий добывается из природного газа путем отделения других газовых примесей. Это достигается снижением их при низких температурах.

Светильный газ . Получается как результат сухой перетонки каменного угля и является первым газом, который был употреблен для аэростатов.

Светильный газ чрезвычайно горюч и тяжелее водорода, почему почти не употребляется для наполнения дирижаблей и идет лишь для наполнения сферических аэростатов как наиболее дешевый из газов, употребляемых в воздухоплавании.

Из книги BIOS. Экспресс-курс автора Трасковский Антон Викторович

Глава IV Наземное оборудование стоянок дирижаблей 1. ЭлингиНаземное оборудование имеет очень большое значение в смысле своего влияния на развитие воздушных сообщений на дирижаблях. Недаром известный английский специалист по воздухоплаванию Денистуан Берней в своей

Из книги Строим дом от фундамента до кровли автора Хворостухина Светлана Александровна

Глава V Недостатки современных дирижаблей 1. Сложность постройкиСложность постройки самолетов и дирижаблей заключается в необходимости сочетать исключительную прочность конструкции с исключительной легкостью ее.Размер работ по сооружению дирижабля объемом в 100000 куб.

Из книги Шлюпка. Устройство и управление автора Иванов Л. Н.

Глава VII Перспективы военного применения дирижаблей 1. Применение на сухопутном театреНесмотря на неудачный в общем опыт боевого использования дирижаблей на сухопутном театре во время войны 1914–1918 гг., в данное время есть достаточно оснований считать положение

Из книги Гараж. Строим своими руками автора Никитко Иван

Глава VIII Воздушный бой дирижаблей Противниками дирижаблей в воздушном бою являются не только самолеты, но и дирижабли; хотя в истории минувшей войны не зарегистрирован ни один случай такого воздушного боя, но возможность его в будущей войне не исключена. Бой дирижабля с

Из книги автора

Глава 1 Назначение и устройство BIOS Зачем нужна BIOSЕсли рассматривать персональный компьютер как некий живой организм, то BIOS (Basic Input/Output System, базовая система ввода/вывода) – это подсознание компьютера. Подобно рефлексам человека, данная система «заставляет» компьютер

Из книги автора

Глава 5 Устройство окон С давних пор для освещения и придания жилому помещению уюта делали окна. А так как стекло было большой редкостью, то вместо него использовались другие материалы. счастью, в настоящее время стекло не редкость: его применяют везде и для разных целей.

Двухместный дирижабль АU-12 предназначен для подготовки пилотов-воздухоплавателей, патрулирования и визуального контроля автодорог и городских территорий с целью экологического мониторинга, контроля за чрезвычайными ситуациями и спасательных операций, охраны и наблюдения, рекламных полетов, качественной фото-, кино-, теле- и видеосъемки в интересах рекламы, телевидения, картографии

Как правило, статьи о современных дирижаблях начинаются с воспоминаний о том, как почти 70 лет назад на американской авиабазе Лейкхерст погиб в огне гигантский немецкий цеппелин «Гинденбург», а три года спустя Герман Геринг приказал разобрать оставшиеся дирижабли на металлолом и подорвать ангары. Эпоха дирижаблей тогда закончилась, пишут обычно журналисты, но вот теперь интерес к управляемым аэростатам снова активно возрождается. Однако подавляющее большинство наших сограждан если где и видят «возродившиеся» дирижабли, то только на разного рода аэрошоу - там они обычно применяются в качестве оригинальных рекламных носителей. Неужели это все, на что способны эти удивительные воздушные корабли? Чтобы выяснить, кому и зачем нужны сегодня дирижабли, пришлось обратиться к специалистам, строящим дирижабли в России.

Плюсы и минусы


Три типа конструкции
В дирижаблестроении выделяются три основных типа конструкции: мягкая, жесткая и полужесткая. Практически все современные дирижабли относятся к мягкому типу. В англоязычной литературе их обозначают термином blimp. Во время Второй мировой войны американская армия активно использовала «блимпы» для наблюдения за прибрежными водами и конвоирования судов.

Дирижабль - это управляемый самодвижущийся аэростат. В отличие от обычного воздушного «шара, который летит» исключительно по направлению ветра и может маневрировать только по высоте в попытке поймать ветер нужного направления, дирижабль способен двигаться относительно окружающих воздушных масс в направлении, выбранном пилотом. Для этой цели летательный аппарат оснащен одним или несколькими двигателями, стабилизаторами и рулями, а также имеет аэродинамическую («сигарообразную») форму. В свое время дирижабли «убила» не столько череда ужаснувших мир катастроф, сколько авиация, развивавшаяся в первой половине ХХ века сверхбыстрыми темпами. Дирижабль тихоходен - даже самолет с поршневыми двигателями летает быстрее. Что уж говорить о турбовинтовых и реактивных машинах. Разгонять дирижабль до самолетных скоростей мешает большая парусность корпуса - сопротивление воздуха слишком велико. Правда, время от времени говорят о проектах сверхвысотных дирижаблей, которые поднимутся туда, где воздух сильно разрежен, а значит, и сопротивление его значительно меньше. Это якобы позволит развивать скорость в несколько сотен километров в час. Однако пока подобные проекты проработаны только на уровне концепции.

Проигрывая авиации в скорости, управляемые аэростаты при этом имеют ряд важных преимуществ, благодаря которым, собственно, возрождается дирижаблестроение. Во-первых, сила, которая поднимает аэростат в воздух (известная всем со школьной скамьи сила Архимеда), совершенно бесплатна и не требует затрат энергии, в отличие от подъемной силы крыла, которая напрямую зависит от скорости аппарата, а значит, от мощности двигателя. Дирижаблю же двигатели нужны в основном для перемещения в горизонтальной плоскости и маневрирования. Поэтому летательные аппараты такого типа могут обходиться моторами значительно меньшей мощности, чем потребовались бы самолету при равной величине полезной нагрузки. Отсюда, а это уже во-вторых, вытекает большая по сравнению с крылатой авиацией экологическая чистота дирижаблей, что в наше время чрезвычайно важно.

Третий плюс дирижаблей - их практически неограниченная грузоподъемность. Создание сверхгрузоподъемных самолетов и вертолетов имеет ограничения по прочностным характеристикам конструкционных материалов. Для дирижаблей же таких ограничений нет, и воздушный корабль с полезной нагрузкой, например, 1000 т - вовсе не фантастика. Добавим сюда возможность длительное время находиться в воздухе, отсутствие необходимости в аэродромах с длинными взлетно-посадочными полосами и большую безопасность полетов - и у нас получится внушительный список достоинств, которые вполне уравновешивают тихоходность. Впрочем, и тихоходность, как выяснилось, можно скорее отнести к достоинствам воздушных кораблей. Но об этом чуть позже.

Конкурент вертолета



Небесный патруль
Двухместный дирижабль АU-12 Крейсерская скорость 50-90 км/ч, мощность маршевого двигателя 100 л.с., максимальная дальность полета 350 км, максимальная высота полета 1500 м

Наша страна - один из мировых центров возрождающегося дирижаблестроения. Лидер отрасли - группа компаний «Росаэросистемы». Побеседовав с ее вице-президентом Михаилом Талесниковым, мы выяснили, как устроены современные российские дирижабли, где и как они используются и что нас ждет впереди.

Сегодня в работе находятся два типа дирижаблей, созданных конструкторами «Росаэросистем». Первый тип - это двухместный дирижабль AU-12 (длина оболочки 34 м). Аппараты такой модели существуют в трех экземплярах, и два из них время от времени используются московской милицией для патрулирования МКАД. Третий дирижабль продан в Таиланд и применяется там в качестве рекламного носителя.



Универсальная машина
Многоцелевой дирижабль Au-30 (многоцелевой патрульный дирижабль объемом более 3000 м3) предназначен для выполнения полетов в течение продолжительного времени, в том числе на малой высоте и с малой скоростью

Гораздо более интересная работа у дирижаблей системы AU-30. Аппараты этой модели отличаются более крупными габаритами (длина оболочки 54 м) и, соответственно, большей грузоподъемностью. Гондола AU-30 способна вместить десять человек (двух пилотов и восемь пассажиров). Как рассказал нам Михаил Талесников, в настоящее время ведутся переговоры с заинтересованными сторонами о возможности организации элитных воздушных туров. Полет на небольшой высоте и на малой скорости (вот оно - преимущество тихоходности!) над красивыми природными ландшафтами или памятниками архитектуры и в самом деле сможет стать незабываемым приключением. Подобные туры проходят в Германии: дирижабли возрожденной марки Zeppelin NT катают туристов над живописным озером Бодензее, в тех самых краях, где когда-то отправился в полет первый немецкий дирижабль. Однако российские дирижаблестроители уверены, что главное предназначение их аппаратов не реклама и развлечения, а выполнение серьезных задач промышленного характера.

Вот пример. Энергетические компании, имеющие в своем распоряжении линии электропередач, должны регулярно проводить мониторинг и диагностику состояния своих сетей. Удобнее всего это делать с воздуха. В большинстве стран мира для такого мониторинга применяются вертолеты, однако у винтокрылой машины есть серьезные недостатки. Помимо того что вертолет неэкономичен, у него еще и весьма скромный радиус действия - всего 150-200 км. Понятно, что для нашей страны с ее многотысячекилометровыми расстояниями и обширным энергетическим хозяйством это слишком мало. Есть и еще одна проблема: вертолет в полете испытывает сильную вибрацию, в результате чего чувствительное сканирующее оборудование дает сбои. Движущийся медленно и плавно дирижабль, способный преодолевать тысячи километров на одной заправке, напротив, идеально подходит для задач мониторинга. В настоящий момент одна из российских фирм, разработавших основанное на лазерных технологиях сканирующее оборудование, а также программное обеспечение к нему, использует два дирижабля AU-30 для оказания услуг энергетикам. Дирижабль этого типа может применяться и для разнообразных видов мониторинга земной поверхности (в том числе в военных целях), а также для картографирования.

Как они летают?

Практически все современные дирижабли, в отличие от цеппелинов довоенной эпохи, относятся к мягкому типу, то есть форма их оболочки поддерживается изнутри давлением подъемного газа (гелия).

Объясняется это просто - для аппаратов сравнительно небольших размеров жесткая конструкция неэффективна и уменьшает полезную нагрузку из-за веса каркаса. Несмотря на то что дирижабли и аэростаты относят к классу аппаратов легче воздуха, многие из них, особенно при полной загрузке, имеют так называемый перетяж, то есть превращаются в аппараты тяжелее воздуха. Это относится и к AU-12 и AU-30. Выше мы уже говорили о том, что дирижаблю, в отличие от самолета, двигатели нужны в основном для горизонтального полета и маневрирования. И вот почему «в основном». «Перетяж», то есть разница между силой земного притяжения и архимедовой силой, компенсируется за счет небольшой подъемной силы, которая появляется, когда встречный поток воздуха набегает на имеющую специальную аэродинамическую форму оболочку дирижабля - в данном случае она работает как крыло. Стоит дирижаблю остановиться - и он начнет опускаться к земле, ведь архимедова сила не полностью компенсирует силу притяжения. Дирижабли AU-12 и AU-30 имеют два режима взлета: вертикальный и с небольшим пробегом. В первом случае два винтовых двигателя с переменным вектором тяги переходят в вертикальное положение и таким образом отталкивают аппарат от земли. После набора небольшой высоты они переходят в горизонтальное положение и толкают дирижабль вперед, в результате чего возникает подъемная сила. При посадке двигатели вновь переходят в вертикальное положение и включаются на реверсивный режим. Теперь дирижабль, напротив, притягивается к земле. Такая схема позволяет преодолеть одну из главных проблем эксплуатации дирижаблей в прошлом - сложность со своевременной остановкой и точным причаливанием аппарата. Во времена могучих цеппелинов их приходилось буквально отлавливать за спущенные вниз тросы и закреплять у земли. Причаливающие команды насчитывали в те времена десятки и даже сотни человек.

При взлете с пробегом двигатели изначально работают в горизонтальном положении. Они разгоняют аппарат до возникновения достаточной подъемной силы, после чего дирижабль поднимается в воздух.

Маневрирование по высоте и управление подъемной силой пилот осуществляет, в частности, меняя тангаж (угол наклона горизонтальной оси) дирижабля. Этого можно добиться как с помощью закрепленных на стабилизаторах аэродинамических рулей, так и путем изменения центровки аппарата. Внутри оболочки, накачанной находящимся под небольшим давлением гелием, находятся два баллонета. Баллонеты - это мешки из воздухонепроницаемой материи, в которые нагнетается забортный воздух. Управляя объемом баллонета, пилот изменяет давление подъемного газа. Если баллонет раздувается, гелий сжимается и плотность его растет. При этом архимедова сила падает, что приводит к снижению дирижабля. И наоборот. При необходимости можно перекачивать воздух, например, из носового баллонета в кормовой. Тогда при изменении центровки угол тангажа примет положительное значение и дирижабль перейдет в кабрирующее положение.

Нетрудно заметить, что современный дирижабль имеет довольно сложную систему управления, предусматривающую работу рулями, варьирование режима и вектора тяги двигателей, а также изменение центровки аппарата и величины давления подъемного газа с помощью баллонетов.

Тяжелее и выше



Дирижабль «Беркут»
Внутри оболочки «Беркута» - пять тканых емкостей с гелием. У поверхности земли закачанный в оболочку воздух будет сдавливать емкости, повышая плотность подъемного газа. В стратосфере, когда «Беркут» окажется в окружении разреженного воздуха, воздух из оболочки будет откачан и емкости под давлением гелия раздуются. В результате плотность его упадет и, соответственно, возрастет архимедова сила, которая будет удерживать аппарат на высоте. «Беркут» разработан в трех модификациях - для высоких широт (HL), для средних широт (ML), для экваториальных широт (ET). Геостационарные характеристики дирижабля позволяют осуществлять функции наблюдения, связи и передачи данных над территорией площадью более 1 млн км2.

Еще одно направление, в котором работают отечественные дирижаблестроители, - это создание тяжелых грузопассажирских дирижаблей. Как уже говорилось, для дирижаблей ограничений по грузоподъемности практически не существует, а потому в перспективе могут быть созданы настоящие «воздушные баржи», которые будут способны перевозить по воздуху почти все что угодно, включая сверхтяжелые негабаритные грузы. Задача упрощается тем, что при изменении линейных габаритов оболочки грузоподъемность дирижабля вырастает в кубической пропорции. К примеру, AU-30, имеющий оболочку длиной 54 м, может брать на борт до 1,5 т полезного груза. Дирижабль нового поколения, разрабатываемый сейчас инженерами «Росаэросистем», при длине оболочки всего на 30 м больше возьмет полезную нагрузку 16 т! В перспективных планах группы компаний - строительство дирижаблей с полезной нагрузкой 60 и 200 т. Причем именно в этом сегменте дирижаблестроения должна произойти маленькая революция. Впервые за многие десятилетия в воздух поднимется дирижабль, выполненный по жесткой схеме. Подъемный газ будет помещаться в мягких баллонах, жестко прикрепленных к каркасу, укрытому сверху аэродинамической оболочкой. Жесткий каркас добавит дирижаблю безопасности, так как даже в случае серьезной утечки гелия аппарат не утратит аэродинамическую форму.

Другой интересный проект, по которому в группе компаний «Росаэросистемы» уже проведены НИОКР, - это геостационарный стратосферный дирижабль «Беркут». В основе идеи - свойства атмосферы. Дело в том, что на высоте 20-22 км ветровой напор относительно невелик, причем ветер имеет постоянное направление - против вращения Земли. В таких условиях довольно легко с помощью тяги двигателей зафиксировать аппарат в одной точке относительно поверхности планеты. Стратосферный геостационар можно использовать практически во всех областях, в которых сейчас применяются геостационарные спутники (связь, передача теле- и радиопрограмм и т.д.). При этом дирижабль «Беркут» будет, разумеется, существенно дешевле любого космического аппарата. Кроме того, если спутник связи выходит из строя, ремонту он уже не подлежит. «Беркут» же в случае любых неполадок всегда можно будет спустить на землю, чтобы провести необходимую профилактику и ремонт. И наконец, «Беркут» - это абсолютно экологически чистый аппарат. Энергию для двигателей и ретранслирующей аппаратуры дирижабль возьмет от солнечных батарей, размещенных на верхней части оболочки. В ночное время питание будет производиться за счет аккумуляторов, накопивших электричество в течение дня.

Еще ближе к космосу

Все дирижабли, о которых шла речь в этой статье, относятся к газовому типу. Однако существуют еще и тепловые дирижабли - фактически управляемые монгольфьеры, в которых подъемным газом служит нагретый воздух. Они считаются менее функциональными, чем их газовые собратья, в основном из-за более низкой скорости и худшей управляемости. Основная сфера применения тепловых дирижаблей - аэрошоу и спорт. И именно в спорте России принадлежит высшее достижение. 17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «Полярный гусь» высоты 8180 м. Однако и спортивным дирижаблям, возможно, будет найдено практическое применение. «Полярный гусь», поднявшись на высоту 10-15 км, сможет стать своего рода первой ступенью системы космических запусков. Известно, что при космических стартах значительное количество энергии тратится именно на начальной стадии подъема. Чем дальше от центра Земли находится стартовая площадка, тем больше экономия топлива и тем большую полезную нагрузку удается вывести на орбиту. Именно поэтому космодромы стараются размещать ближе к экваториальной области, чтобы выиграть (за счет приплюснутой формы Земли) несколько километров.


Высотные полеты на дирижаблях
8180 м, 2006 г.,«Полярный гусь» (Россия) 7600 м, 1917 г.,Zeppelin L-55 (Германия) 6614 м, 2004 г.,Borland Rover A-2 (Великобритания) 6234 м, 2003 г., Colting SPS 62 (Канада) 5059 м, 1988 г., Borland Rover (США)

17 августа 2006 года пилот Станислав Федоров достиг на тепловом дирижабле российского производства «АвгурЪ» AU-35 («Полярный гусь») высоты 8180 м. Так был побит мировой рекорд, продержавшийся 90 лет и принадлежавший немецкому дирижаблю Zeppelin L-55. Рекорд «Полярного гуся» стал первым шагом в выполнении программы «Высокий старт» - проекта Русского воздухоплавательного общества и группы компаний «Метрополь» по запуску легких космических аппаратов с высотных дирижаблей. В случае успеха этого проекта в России будет создан передовой аэростатно-космический комплекс, способный экономично выводить на орбиту частные спутники весом до 10-15 кг. Одно из предполагаемых направлений использования комплекса «Высокий старт» - запуск геофизических ракет для исследования приполярных областей Северного Ледовитого океана.

Гибридные дирижабли



Корабли будущего: «Небесная яхта» ML866 Aeroscraft и грузовой дирижабль JHL-40




Интересные проекты дирижаблей нового поколения разрабатываются на североамериканском континенте. Создать «небесную суперъяхту» ML 866 намерена в недалеком будущем корпорация Wordwide Aeros. Этот дирижабль сконструирован по гибридной схеме: в полете около 2/3 веса машины будут компенсироваться архимедовой силой, а подниматься вверх аппарат будет благодаря подъемной силе, возникающей при обтекании набегающим потоком воздуха оболочки корабля. Для этого оболочке будет придана специальная аэродинамическая форма. Официально ML 866 предназначен для VIP-туризма, однако, если учесть, что Wordwide Aeros получает финансирование в частности от государственного агентства DARPA, занимающегося оборонными технологиями, не исключено использование дирижаблей в военных целях, например для наблюдения или связи. А канадская компания Skyhook совместно с Boeing объявила о проекте JHL-40 - грузового дирижабля с полезной нагрузкой 40 т. Это тоже «гибрид», однако здесь архимедова сила будет дополняться тягой четырех роторов, создающих тягу по вертикальной оси.

Гибель гигантов



Дирижабль LZ 127 «Граф Цеппелин»

История воздушных катастроф с большим количеством жертв берет свое начало в эпохе дирижаблей. Британский дирижабль R101 отправился в свой первый полет 5 октября 1930 года. На борту он нес государственную делегацию во главе с министром воздушного сообщения Кристофером Бёрдвеллом лордом Томпсоном. Через несколько часов после старта R101 снизился до опасной высоты, врезался в холм и сгорел. Причиной катастрофы стали просчеты в проектировании. Из 54 пассажиров и членов экипажа погибли 48, включая министра. 73 американских военных моряка встретили гибель, когда попавший в бурю дирижабль «Акрон» упал в море неподалеку от побережья штата Нью-Джерси. Случилось это 3 апреля 1933 года. Людей убил не удар при падении, а ледяная вода: на дирижабле не было ни одной спасательной лодки и лишь несколько пробковых жилетов. Знаменитая катастрофа «Гинденбурга», произошедшая 6 мая 1937 года, по количеству жертв уступает этим двум. Все три погибших дирижабля были накачаны взрывоопасным водородом. Гелиевые дирижабли сегодняшнего дня значительно безопаснее.

После появления 13 июля новости от заместителя гендиректора «Концерна Радиоэлектронные Технологии» Владимира Михеева относительно размещения на платформе перспективных российских дирижаблей радиолокационных комплексов системы ПРО, все информационные электронные и печатные ресурсы тут же сосредоточились на рассмотрении возможностей будущей системы противостоять межконтинентальным баллистическим ракетам, но будущее предназначение подобных комплексов значительно более широкое, нежели ПРО лишь с космического направления.


Дирижабли семейства «Атлант» станут первыми грузовыми аппаратами данного класса в ВВС России ХХI века

В рамках программ развития ВКО и ВВС России, на всех ключевых стратегических воздушных направлениях, особенно Северо-Западном и Восточном ВН, предусмотрено развёртывание более, чем десяти РЛС системы предупреждения о ракетном нападении типов «Воронеж-ДМ» и «Воронеж-М». Эти радиолокационные комплексы относятся к системам быстрой заводской готовности, построены по модульной схеме и обладают обзорным потенциалом, не уступающим мощнейшему комплексу СПРН типа «Дарьял-У» , дежурящему близ Печоры.

Кроме того, ежегодно в структуру ПВО и РТВ РФ поступают перспективные образцы радиолокационной техники: всевысотные обнаружители 96Л6Е, РЛО целеуказания и управления воздушным движением 59Н6Е «Противник-Г», а также такие многофункциональные радиолокационные комплексы для тактической ПРО большой дальности как «Небо-М», которому до сих пор нет равных среди зарубежных аналогов. Данные системы полностью закрывают стратосферные рубежи стратегически важных регионов страны от ударов СВН стран НАТО и США.

Как замечают многочисленные западные и азиатские военно-аналитические интернет-издания, Запад уже не способен на успешное вторжение в воздушное пространство России и членов ОДКБ: такие попытки будут жёстко пресекаться мощной группировкой ПВО Западного военного округа. И действительно, в Белоруссии и Ленинградской области, Крыму и Южном военном округе развёрнута столь развитая сеть ПВО на базе систем С-300ПС/ПМУ-1,2 и , а также прикрывающих их , что взломать её практически невозможно: ещё в воздушном пространстве приграничных областей страны НАТО уже лишаться четверти/трети своих ВВС, а на этот шаг ни один здравомыслящий англосакс не пойдёт.

Вспомните, сколько американцы «басен» рассказывали относительно воздушной операции и ракетных ударов по Ирану и Сирии в течении лет так десяти; естественно, зная мощь ПВО этих государств, ни о какой операции и речи быть не могло. В реальности же, агрессия совершалась лишь против государств с устаревшей ПВО на базе стареньких комплексов «Куб», «Нева», «Квадрат», С-200 (вспоминается Сербия, Ирак и Ливия).

В нашей ситуации стоит опасаться совершенно иного типа воздушно-космического противостояния, где театр воздушно-космических боевых действий будет «прижиматься» всё ближе и ближе к земле.

В условиях современного военного конфликта, когда всё воздушное пространство на высотах более 30 – 50 метров тщательно просматривается РЛС обзора и наведения наземного или морского базирования, в выигрыше будет оставаться тот, кто больше применяет малозаметные средства воздушного нападения в зоне или ниже вышеуказанных высот. Поэтому в ВВС США, помимо стратегических КР «Томагавк», внедряются и тактические крылатые ракеты средней и большой дальности, обладающие небольшими габаритными размерами, а значит, не имеющие ограничений по носителям в воздухе, на земле и на воде.

Наибольшее распространение получают крылатые ракеты семейства AGM-158A «JASSM», AGM-158B «JASSM-ER» и XM-501 “NLOS-LS”, они полностью унифицированы с подвесками большинства типов тактической истребительной авиации, а контейнерные пусковые установки XM-501 модульного типа спокойно помещаются в крытые прицепы грузовых автомобилей и на палубе небольших патрульных катеров. Дальность ракет системы «NLOS-LS» составляет 200 км, сами ракеты обладают «интеллектуальным» наведением с телеметрическим каналом и двухканальной (ТВ/ИК) системой самонаведения, что позволяет подлетать к цели по самым неожиданным траектория, с огибанием рельефа местности и облётом территории, насыщенной ПВО.

Ракеты семейства «JASSM-ER» имеют воздушное базирование и почти стратегическую дальность до 1200 км: теперь даже небольшие истребители типа F-16C или «Рафаль» могут выполнять стратегические ударные операции. Об угрозах со стороны ракет «JASSM», закупаемых Минобороны Польши для национальных ВВС, мы уже писали в одной из предыдущих статей. Тактические малоразмерные ракеты БД – едва ли не основная угроза для нашей ПВО.

Американские оборонные компании уже давно работают в сфере дирижаблей военного назначения. Много работ проведено компаниями «Локхид Мартин», «Mav6» и Агентством по перспективным оборонным исследованиям «DARPA», которое начало наиболее амбициозную программу под названием «ISIS». К программе были привлечены компании «Рэйтеон» и «Локхид Мартин». Была поставлена задача разработать дирижабль дальнего радиолокационного дозора и наведения со стратосферным базированием на высоте 21000 метров.

В способности комплекса должно было входить несколько режимов работы: «воздух-воздух», «воздух-поверхность/море», благодаря чему обеспечивалось обнаружение и сопровождение малоразмерных крылатых ракет и авиации в радиусе радиогоризонта (600 км на высоте 21000 м) и более, обнаружение старта БРПЛ морского базирования, обнаружение малоразмерной наземной техники и людей в радиусе 300-350 км, обнаружение и сопровождение всех видов высокоточного и зенитного ракетного оружия в радиусе 350 – 450 км. Для этого американские специалисты должны были разместить в нижней под радиопрозрачной обшивкой дирижабля мощную РЛС с АФАР и синтезированной апертурой, которая имела бы зону обзора, близкую к 360 градусам и двухчастотный режим обзора СМ- и ДМ-диапазона.

Между тем программа «ISIS» пока что на стадии развития и на театрах военных действий ещё не использовалась. Но получили развитие более простые системы, способные осуществлять оповещение о ракетном нападении или приближении подразделений противника, а также осуществлять позиционное ДРЛО. Самой интересной является комплекс «TARS», который может брать на борт мощную обзорную РЛС AN/TPS-78. Радар работает в S-диапазоне ДМ-волн и позволяет обнаруживать воздушные цели на удалении около 440 км. Дирижабль-носитель, разработанный компанией «ILC Dover» объёмом 11,9 тыс. м 3 имеет длину 63 метра (как у авиалайнера Ил-96-400), благодаря чему вес полезного груза доходит до 0,55 тонны. Данный комплекс активно используется американцами в Афганистане.

Часто можно встретить и дирижабли семейства «PTDS», разработанные компанией «Локхид Мартин». Они отличаются достаточно малым объёмом оболочки (2,1 тыс. м 3) и способны брать на борт «снаряжение» из оптико-электронных визирных систем высокого разрешения и лёгких комплексов акустической разведки, которые позволяют получать координаты источника выстрелов противника а также любое его перемещение по местности в радиусе не менее 20 км.


Дирижабли «PTDS» имеют достаточно небольшие размеры и малый вес «снаряжения», тем не менее, имеют важное тактическое значение в обороне границ США и американских военных лагерей и баз в Азии

Более радикальное «снаряжение» было придумано в проекте «Синий Дьявол» компании «Mav6», где для обороны цеппелина было решено применить систему индивидуальной ПРО.

Впрочем, все данные разработки ещё ждут своего часа, а пока пришло время рассмотреть возможности, которые могут быть реализованы в дирижабле для ВВС России.

В основу задач наших дирижаблей ляжет именно ДРЛО низколетящих крылатых ракет на тех участках территории, где присутствует сложный рельеф, затрудняющий обзор наземными РЛС систем ПВО и (или) количество зенитно-ракетных систем не позволяет в полной мере проконтролировать низковысотного участка воздушного пространства , например, некоторые районы западных границ России, а также северо-восточное побережье, омываемое морем Лаптевых и Восточно-Сибирским морем. Отечественный дирижабль должен будет подниматься на высоты до 20 км для выполнения своей основной функции – радиолокационного дозора. Россия нуждается в высотных дирижаблях гораздо больше, чем США, так её территория в 2 раза больше американской.

Двумя самыми главными преимуществами дирижаблей, с точки зрения службы в ВВС, является возможность круглосуточного наблюдения за определённым участком ВП и земной поверхности (без перерывов и необходимости дополнительной нагрузки операторов самолётов ДРЛО), применения более мощных АФАР (большая оболочка дирижабля способствует установке АР большой площади). «Арктические силы» станут одной из главных группировок войск, которая будет применять РЛДН-дирижабли для контроля за российской частью континентального шельфа.

Но дирижабли, как и любая другая техника военного назначения, имеют свои серьёзные недостатки, которые должны предусматриваться и ликвидироваться.
1. Крупные дирижабли, используемые для подъёма тяжёлого оборудования (РЛС, комплексов оптико-электронной и радиоэлектронной разведки) всегда имеют большие размеры оболочки, которые в поперечнике могут достигать 60 или даже 100 метров. Они становятся хорошо видимыми для оптических систем наблюдения противника, а само снаряжения имеет значительную радиолокационную заметность и является мощным источником излучения, из-за чего дальность его обнаружения вражескими средствами разведки может доходить до сотен или даже 1000 км.

2. Для выполнения задач ДРЛО с большей эффективностью, чем самолёты РЛДН, дирижабли подниматься на высоты свыше 17000 м, где радиогоризонт превышает 500 км, из-за чего упрощается возможность уничтожения дирижабля с помощью перспективных зенитно-ракетных систем дальнего радиуса действия, а также ракет класса «воздух-воздух» сверхбольшой дальности (это могут быть ЗУР RIM-174 комплекса SM-6 “ERAM” или модернизированные ракеты «в-в» AIM-54C «Феникс») ; данные ракеты способны подниматься на высоты до 40 км, а затем по частично-баллистической траектории пролетать несколько сотен километров до цели, находящейся в верхних слоях атмосферы, потери скорости ракет на этих высотах минимальные.

3. Дирижабли являются статическими объектами большого размера из-за чего облегчается возможность их поражения с помощью сверхмощных «мегаваттных» противоракетных лазеров воздушного базирования, которые могут быть на вооружении ВВС США. Уязвимо и разведывательное оборудование перед облучением лазером или электромагнитными излучателями высокой мощности, поскольку дирижабли маневрировать, как самолёты, не способны.

РЕШЕНИЕ ВОПРОСА

  1. Разведывательные дирижабли не могут быть развёрнуты в непосредственной близости к ТВД , оперативное удаление от поля боя должно составлять от 500 до 1000 км, в зависимости от информации о вооружении ВВС и ПВО противника в зоне боевых действий. В мирное время, — не менее 300 км в глубь от границы условного контроля дружественными ВС.
  2. Каждый разведывательный комплекс должен быть оснащён станцией обнаружения атакующих ракет, лазерного облучения и радиолокационного облучения.
  3. Каждый дирижабль должен иметь на вооружении собственную компактную систему ПРО на базе лёгких противоракет (модернизированных версий ПЗРК «Игла-С» с радиолокационными головками самонаведения миллиметрового диапазона) для возможности борьбы с ЗУР противника.
  4. Зона работы дирижаблей должна прикрываться дивизионом ЗРК С-400 или «Витязь».
  5. Оборонительные системы дирижабля должны включать в себя не сколько баллонов со специальными инфракрасными аэрозолями для формирования защитной завесы в случае облучения сверхмощными лазерными установками.
  6. В случае сдвижения линии воздушного ТВД к зоне оперирования дирижабля, последний должен быть спущен на высоты менее 6-4 км, что значительно осложнит его поражение ракетами-перехватчиками противника в плотных слоях атмосферы.

Как видите, данное средство имеет очень сложную инструкцию по применению, учитывающую оперативную военную обстановку, технологическую оснащённость противника и собственные ТТХ и ЛТХ, значительно отличающиеся от тактической авиации. Между тем, богатая номенклатура оборудования дирижабля позволяет использовать его в целях точного воздушного и наземного целеуказания для войск ПВО или сухопутных войск.

АЛЬТЕРНАТИВНОЕ ПРИМЕНЕНИЕ

Дирижабли могут быть носителями мощных РЛС артиллерийской разведки. Применение контрбатарейных РЛС на воздушной платформе могло бы стать достаточно перспективным методом ведения войны, когда речь заходит о боях в горной местности. Стандартные «контрбатарейки» типа «Зоопарк» смогут обнаруживать и сопровождать артиллерийские снаряды лишь в момент его выхода из «тени» естественного препятствия (горы, холма) на линию визирования РЛС, из-за чего для определения координат понадобится гораздо больше времени и при отсутствии разведывательной наземной или авиационной техники на противоположной стороне горного элемента, деятельность дружественной артиллерии по подавлению огневых точек будет осложнена.

Дирижабль, оснащённый РЛС артиллерийской разведки, находящийся в 10 км над землёй, сможет практически сразу вычислить месторасположения вражеских единиц и предоставить точные координаты для поражения.


Обратите внимание, на «МАКС» дирижабль «Атлант» очень кстати был размещён рядом с самыми перспективными элементами радиолокационного прогресса России — радиолокационными модулями ДМ-/СМ-диапазона (РЛМ-Д и РЛМ-СЕ) комплекса «Небо-М», это в очередной раз подчёркивает перспективы дирижабля в ВВС

Сейчас данная отрасль в России только начинает зарождаться, и «КРЭТ» прикладывает для этого не мало усилий. Первые грузовые дирижабли «Атлант», над оборудованием которых работает мощнейший в РФ «электронный» холдинг, должны предстать перед нами в 2018-2019 гг. Разведывательные аппараты появятся не ранее начала 20-х годов.